Evaluation of the contribution of LiDAR data and postclassification procedures to object-based classification accuracy
نویسندگان
چکیده
Object-based image analysis (OBIA) is becoming an increasingly common method for producing land use/land cover (LULC) classifications in urban areas. In order to produce the most accurate LULC map, LiDAR data and postclassification procedures are often employed, but their relative contributions to accuracy are unclear. We examined the contribution of LiDAR data and postclassification procedures to increase classification accuracies over using imagery alone and assessed sources of error along an ecologically complex urban-to-rural gradient in Olympia, Washington. Overall classification accuracy and user’s and producer’s accuracies for individual classes were evaluated. The addition of LiDAR data to the OBIA classification resulted in an 8.34% increase in overall accuracy, while manual postclassification to the imageryþ LiDAR classification improved accuracy only an additional 1%. Sources of error in this classification were largely due to edge effects, from which multiple different types of errors result. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083529]
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملIntegration of Visible Image and LIDAR Altimetric Data for Semi-Automatic Detection and Measuring the Boundari of Features
This paper presents a new method for detecting the features using LiDAR data and visible images. The proposed features detection algorithm has the lowest dependency on region and the type of sensor used for imaging, and about any input LiDAR and image data, including visible bands (red, green and blue) with high spatial resolution, identify features with acceptable accuracy. In the proposed app...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملComparison of Performance in Image Classification Algorithms of Satellite in Detection of Sarakhs Sandy zones
Extended abstract 1- Introduction Wind erosion as an “environmental threat” has caused serious problems in the world. Identifying and evaluating areas affected by wind erosion can be an important tool for managers and planners in the sustainable development of different areas. nowadays there are various methods in the world for zoning lands affected by wind erosion. One of the most important...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017